5.2 & 5.3 - Day 2 - Solving Systems of Linear Equations by Substitution and Elimination - Notes

Essential Question: How can you use elimination to solve a system of linear equations?

	Essential Question: How can you use elimination to solve a system of linear equations?							
Main Ideas/ Questions	Notes/Examples							
Methods to Solve Systems of Equations	Methods to solve systems of equations:							
Special Cases	When all the variables cancel completely out Getting a FALSE statement is NO SOLUTION (a TRUE statement is INFINITE SOLN)							
Solving Systems Using Substitution or Elimination								
P	Solve each system of equations – choose the best method							
1. $x = 3 - y$ 5x + 3y = -1	Solution: $(-5, 8)$ 2. $x-y=6$ $x+y=8$ Solution: $(7, 1)$							
5(3-y)+3y	x-y=0 =-1 $x=3-8$ $x+y=8$ $7-y=0$							
15-2y=	-15 X=-14 -y=-1							
-2y=	$\begin{array}{c} 10_{2} \\ 8 \end{array}$							
3. $2x - 3y = 16$	4. $x = (-3y + 5)$							
-2x - 4y = -2	Solution $(5,-2)$ $5y-4x=-3$ Solution: $(2,1)$							
2x-3y=16	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
-7y=12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
y=-6	$\chi = 5$ $\chi = 1$							
5. $-3x + 3y = 4$ y = x + 3 -3x + 3(x + 3)	Solution: NO Solution: NO Solution: Solution: Solution: Solution: Solution: Solution: Solution: Many							
-BX + 3X+	7=4 7±4 False							

5.2 & 5.3 - Day 2 - Solving Systems of Linear Equations by Substitution and Elimination - Notes

Making Adjustments: Sometimes you need to rearrange or multiply the whole equation by a number in order to make one of the methods work.....

7.
$$y-1=4x$$

$$3y=3x-6$$

$$y-1=4x$$

$$+1+1$$

$$y=(4x+1)$$

$$3(4x+1)=3x-6$$

$$-3x$$

Application: 9. An adult ticket, x, to a museum costs \$3 more than a children's ticket, y. When 200 adult tickets and 100 children's tickets are sold, the total revenue is \$2100. The situation can be represented by the following system: x = 3 + y

200x + 100y = 2100

What is the cost of a children's ticket?

 $\begin{array}{ccc}
200(3+y)+100y=2100 & X=3+y \\
(600+200y+100y=2100) & X=3+5 \\
-600 & X=3+5 \\
X=8 & Adult=$ 8 \\
300 & 300 & Child=$ 5
\end{array}$

10. The graph represents the average salaries of classroom teachers in two school districts. Solve the system using the method of your choice.

$$\frac{x}{5}|_{25}^{125} \Rightarrow y=1.75x+16.25$$
 (16,44)

$$\frac{x}{0} = \frac{y}{25} \Rightarrow y = 1.2x + 25$$

a. What year were the average salaries in the two districts equal?

$$1985+16 = 2001$$

b. What was the average salary in both districts in that year? \$44.000

5.2 & 5.3 Solving a System of Equations using Substitution and Elimination – DAY 2

In Exercises 1 and 2, tell which equation you would choose to solve for one of the variables. Explain.

1. Equation #1:
$$2x - 3y = 6$$

2. Equation #1:
$$4x - y = 3$$

Equation #2:
$$x + 7y = 2$$

Equation #2:
$$3x + 3y = 7$$

Solve each system of equations. Check your solution.

3.
$$y = 2x - 5$$

Solution:

4.
$$12x - 8y = 10$$

Solution:

$$4x - 2y = 10$$

$$-6x + 4y = 5$$

5.
$$x + y = 7$$

$$5x + 2y = 8$$

6.
$$7x - 6y = 9$$

$$5x + 2y = 19$$

7.
$$3x + 4y = -1$$

$$-2x - 5y = 10$$

Solution:

- **8.** McDonald's sells Big Macs and Double Cheeseburgers. One day, McDonald's sold 15 more Big Macs than Double Cheeseburgers for a total of 35 hamburgers. Would it be reasonable for McDonald's to sell 9 Double Cheeseburgers and 26 Big Macs?
 - A Yes, since the total number of burgers sold is 35.
 - B No, since the number of Cheeseburgers is not 15 more than then number of Big Macs.
- 9. The graph represents the average salaries of high school principals in two states.

- a. During what year were the average salaries in the two states equal?
- b. What was the average salary in both states in that year?

- 10. To raise money for Homecoming, the Student Council sold tickets to a basketball game. There were a total of 240 tickets sold. The number of adult tickets was 2 times the number of student tickets. Based on this information, would it be reasonable for the Student Council to have sold 160 student tickets and 80 adult tickets?
 - A Yes, since the total number of tickets sold is 240.
 - B No, since the number of adult tickets is not two times the number of student tickets.

Use the tables to determine the solution of the system.

11.____

0

1

2

3

У

-1

0

1

2

3

У

8

6

4

2

0

12.	

х	у	у
-2	5	2
-1	4	4
0	3	6
1	2	8
2	1	10

14									
y = -:	<u>y</u> :	= -	3x +	5					
х	У		ĸ	У					
1			1						
2			0						
3			1						
4			2						
5			3						

15. Prove that (-2, 1) is or is not a solution for the system: y = 2x + 5

(Plug in the x and y values into BOTH equations)

$$y = x - 2$$